Сталь жаропрочная релаксационностойкая

Характеристика материала 25Х1МФ

Марка :	25Χ1ΜΦ
Классификация :	Сталь жаропрочная релаксационностойкая
Применение:	прутки, поковки, болты, шпильки и другие крепежные детали, работающие при температурах до 500-510 град.
	it.

Химический состав в % материала 25Х1МФ.

C	Si	Mn	Ni	S	P	Cr	Mo	V	Cu
0.22 -	0.17 -	0.4 -	до	до	до	1.5 -	0.25 -	0.15 -	до
0.29	0.37	0.7	0.25	0.025	0.03	1.8	0.35	0.3	0.2

Температура критических точек материала 25X1MФ.

$\mathbf{Ac_1} = 760 \; ,$	$Ac_3(Ac_m) = 840,$	$Ar_3(Arc_m) = 760 - 780$,	$Ar_1 = 680 - 690$
----------------------------	---------------------	-----------------------------	--------------------

Механические свойства при T=20°C материала 25X1MФ.

Сортамент	Размер	Напр.	S _B	ST	d ₅	y	KCU	Термообр.
-	мм	-	МПа	МПа	%	%	кДж / м ²	-
Заготовка	толщина 25	Прод.	900	750	14	50	600	Закалка 880 - 900°С, масло, Отпуск 640 - 660°С,Охлаждение воздух,
Заготовка		Прод.	800	680	16	50	600	Закалка 930 - 950°C, масло, Отпуск 620 - 660°C,

Физические свойства материала 25Х1МФ.

Ψηση τέκπε chone iba ma repnasia 25Χ1ΜΦ.										
T	E 10 ⁻⁵	a 10 ⁶	1	r	C	R 10 9				
Град	МПа	1/Град	Вт/(м•град)	кг/м ³	Дж/(кг•град)	Ом·м				
20	2.17			7840						
100	2.11	11.3	39.8		462	312				
200	2.06	11.7	37.9	7790		396				
300	1.98	12.8	36.9			475				

400	1.91	13.9	35.9	7720		574
500	1.8	14.2	34.8			680
600	1.67	14.4		7650		826
T	E 10 ⁻⁵	a 10 ⁶	1	r	C	R 10 9

Технологические свойства материала 25Х1МФ.

Свариваемость:	трудносвариваемая.
Флокеночувствительность:	чувствительна.
Склонность к отпускной хрупкости:	не склонна.

Обозначения:

Механические свойства:

- s_в Предел кратковременной прочности , [МПа]
 - Предел пропорциональности (предел текучести для остаточной
- s_T деформации), [МПа]
- d₅ Относительное удлинение при разрыве, [%]
- v Относительное сужение, [%]

КСU - Ударная вязкость, [кДж / м²]

Физические свойства:

- Т Температура, при которой получены данные свойства, [Град]
- Е Модуль упругости первого рода, [МПа]
- а Коэффициент температурного (линейного) расширения (диапазон 20° T) , [1/Град]
- 1 Коэффициент теплопроводности (теплоемкость материала), [Вт/(м·град)]
- r Плотность материала, [кг/м³]
- С Удельная теплоемкость материала (диапазон 20° Т), [Дж/(кг·град)]
- R Удельное электросопротивление, [Ом·м]

Свариваемость:

- сварка производится без подогрева и без последующей термообработки

- сварка возможна при подогреве до 100-120 град. и последующей термообработке

- для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки - отжиг

Сталь жаропрочная релаксационностойкая Характеристика материала 25X2M1Ф

Марка :	25X2M1Φ
Классификация :	Сталь жаропрочная релаксационностойкая
Применение:	болты, плоские пружины, гайки и другие крепежные детали с рабочей температурой 520-540 град.

Химический состав в % материала 25Х2М1Ф.

С	Si	Mn	Ni	S	P	Cr	Mo	V	Cu
0.22 -	0.17 -	0.4 -	до	до	до	2.1 -	0.9 -	0.3 -	до
0.29	0.37	0.7	0.25	0.025	0.03	2.6	1.1	0.5	0.2

Температура критических точек материала 25Х2М1Ф.

$Ac_1 = 780$,	$Ac_3(Ac_m) = 870 ,$	$Ar_3(Arc_m) = 790 ,$	$Ar_1 = 700$	

Механические свойства при $T=20^{\circ} C$ материала $25X2M1\Phi$.

Сортамент	Размер	Напр.	S _B	ST	d_5	y	KCU	Термообр.
-	MM	-	МПа	МПа	%	%	кДж / м ²	-
Пруток	Ж 25	Прод.	900	750	10	40	300	Нормализация 1030 - 1060°С,Отпуск 680 - 720°С, воздух,

Физические свойства материала 25Х2М1Ф

T	E 10 ⁻⁵	a 10 ⁶	1	r	C	R 10 ⁹
Град	МПа	1/Град	Вт/(м·град)	кг/м ³	Дж/(кг-град)	Ом·м
20	2.23			7800		270
100	2.18	12.5	32.7	7780	536	360
200	2.13	12.9	31.8	7750	574	420
300	2.07	13.3	30.1	7720	599	500
400	2	13.7	28.5	7680	632	590
500	1.92	14	28.1	7650	674	710
600	1.83	14.7	26.4	7600	733	840

700	1.75					970
T	E 10 ⁻⁵	a 10 ⁶	1	r	C	R 10 ⁹

Технологические свойства материала 25X2M1Ф.

Свариваемость:	не применяется для сварных конструкций.

Обозначения:

Механические свойства:

- $s_{\scriptscriptstyle B}$ Предел кратковременной прочности , [МПа]
- s_T Предел пропорциональности (предел текучести для остаточной деформации), [МПа]
- d₅ Относительное удлинение при разрыве, [%]
- у Относительное сужение, [%]

КСU - Ударная вязкость, [кДж/м²]

Физические свойства:

- Т Температура, при которой получены данные свойства, [Град]
- Е Модуль упругости первого рода, [МПа]
- а Коэффициент температурного (линейного) расширения (диапазон $20^{\rm o}$ T) , [1/Град]
- 1 Коэффициент теплопроводности (теплоемкость материала), [Вт/(м·град)]
- r Плотность материала, [кг/м³]
- С Удельная теплоемкость материала (диапазон 20° T), [Дж/(кг·град)]
- R Удельное электросопротивление, [Ом·м]

Свариваемость:

- сварка производится без подогрева и без последующей термообработки
- сварка возможна при подогреве до 100-120 град. и последующей термообработке
- для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки - отжиг