Сталь жаропрочная высоколегированная Характеристика материала 08X21H6M2T

Марка:	08X21H6M2T
Классификация :	Сталь жаропрочная высоколегированная
Применение:	теплообменники, реакторы, трубопроводы, арматура, длительно работающие при температурах до 300 град.

Химический состав в % материала 08Х21Н6М2Т.

C	Si	Mn	Ni	S	P	Cr	Mo	Ti
до	до	до	5.5 -	до	до	20 -	1.8 -	0.2 -
0.08	0.8	0.8	6.5	0.025	0.035	22	2.5	0.4

Механические свойства при T=20°C материала 08X21H6M2T.

Сортамент	Размер	Напр.	S _B	s _T	d ₅	y	KCU	Термообр.
-	ММ	-	МПа	МПа	%	%	кДж / м ²	-
Сорт			600	350	18		600	Нагрев 1050°С,Охлаждение вода,

Физические свойства материала 08X21H6M2T.

T	E 10 ⁻⁵	a 10 ⁶	1	r	C	R 10 ⁹
Град	МПа	1/Град	Вт/(м•град)	кг/м ³	Дж/(кг•град)	Ом·м
20	1.93			7700		700
100	1.85	9.5	14.6			
200	1.78	13.8	15.9			
300	1.69	16	17.5			
400	1.64	16	19.2			
500	1.62	16.3	20.5			
600	1.53	16.7	21.7			
700	1.39	17.1	21.7			
800	1.36	17.1	24.3			
900		17.4	25.5			

	Т	E 10 ⁻⁵	a 10 ⁶	1	r	С	R 10 ⁹
- 1	_			-	_		

Обозначения:

Механические свойства:

- s_в Предел кратковременной прочности, [МПа]
- Предел пропорциональности (предел текучести для остаточной деформации), [МПа]
- d₅ Относительное удлинение при разрыве, [%]
- у Относительное сужение, [%]
- КСU Ударная вязкость, [кДж / м²]

Физические свойства:

- Т Температура, при которой получены данные свойства, [Град]
- Е Модуль упругости первого рода, [МПа]
- а Коэффициент температурного (линейного) расширения (диапазон 20° T) , [1/Град]
- 1 Коэффициент теплопроводности (теплоемкость материала), [Вт/(м·град)]
- r Плотность материала, [кг/м³]
- С Удельная теплоемкость материала (диапазон 20° Т), [Дж/(кг·град)]
- R Удельное электросопротивление, [Ом·м]